Classifying zeros of two-sided quaternionic polynomials and computing zeros of two-sided polynomials with complex coefficients
نویسندگان
چکیده
منابع مشابه
The classification and the computation of the zeros of quaternionic, two-sided polynomials
Already for a long time it is known that quaternionic polynomials whose coefficients are located only at one side of the powers, may have two classes of zeros: isolated zeros and spherical zeros. Only recently a classification of the two types of zeros and a means to compute all zeros of such polynomials have been developed. In this investigation we consider quaternionic polynomials whose coeff...
متن کاملEla Zeros of Unilateral Quaternionic Polynomials
The purpose of this paper is to show how the problem of finding the zeros of unilateral n-order quaternionic polynomials can be solved by determining the eigenvectors of the corresponding companion matrix. This approach, probably superfluous in the case of quadratic equations for which a closed formula can be given, becomes truly useful for (unilateral) n-order polynomials. To understand the st...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملPolynomials with integer coefficients and their zeros
We study several related problems on polynomials with integer coefficients. This includes the integer Chebyshev problem, and the Schur problems on means of algebraic numbers. We also discuss interesting applications to the approximation by polynomials with integer coefficients, and to the growth of coefficients for polynomials with roots located in prescribed sets. The distribution of zeros for...
متن کاملReal Almost Zeros of Random Polynomials with Complex Coefficients
We present a simple formula for the expected number of times that a complex-valued Gaussian stochastic process has a zero imaginary part and the absolute value of its real part is bounded by a constant value M. We show that only some mild conditions on the stochastic process are needed for our formula to remain valid. We further apply this formula to a random algebraic polynomial with complex c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2013
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2013.262.317